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HONEYCOMBING THE ICOSAHEDRON AND
ICOSAHEDRONING THE SPHERE1

Joseph M. McCollum2

Abstract—This paper is an attempt to trace the theoretical foundations of the Forest Inventory and Analysis and Forest
Health Monitoring hexagon networks. It is important in case one might desire to alter the intensity of the grid or lay down
a new grid in Puerto Rico and the U.S. Virgin Islands, for instance. The network comes from tessellating an icosahedron
with hexagons and projecting those hexagons to a sphere. The paper proposes a sample network for Puerto Rico and
the U.S. Virgin Islands.

1 Paper presented at the Second Annual Forest Inventory and Analysis (FIA) Symposium, Salt Lake City, UT, October 17–18, 2000.

2 Computer Specialist, USDA Forest Service, Forest Inventory and Analysis, Southern Research Station, Asheville, NC 28804.

INTRODUCTION
Pardon the title; it is bad grammatical form to verb a noun. It
is also geometrically impossible to square the circle using
classical means. There will always be a few chords from
the circle left over. Using the method that follows, one will
find that it is impossible to completely tessellate a sphere
with regular hexagons. There will be twelve pentagons left
over. Historically, Forest Inventory and Analysis (FIA) plots in
the American South have been laid out on a square grid or
no grid at all—that is, haphazardly. Forest Health Monitoring
(FHM) plots have been laid out on a hexagon network.
Hexagons, squares, and triangles tile the plane (or any
study area on earth). Carr and others (1999) list a set of
criteria for global grid cells that argue in favor of hexagons;
among other things, hexagons provide maximum area for
minimum perimeter. The astrophysicist Max Tegmark
(1996) listed similar criteria and built a similar grid for the
sky. In geometry, squaring the circle means attempting to
rearrange a circle to form a square; and in this paper,

honeycombing an icosahedron is attempting to fit a
honeycomb pattern on top of an icosahedron. To
accomplish this task, start with an unfolded icosahedron,
as shown in figure 1. Ultimately, this icosahedron shall be
projected to the sphere of the earth, as shown in figure 2.

An icosahedron is a geometric solid with 20 faces, all of
which are equilateral triangles. Throughout this paper, the
“poles” of the icosahedron will be points at the very top and
very bottom of the unfolded solid. The “cuts” will be those
line segments connected to the poles, and the “ends” of
the “cuts” will be the points at which the cuts join. A similar
method will work with an octahedron, but the icosahedron
approximates a sphere better than any other platonic solid.
Tesselate each face with nine triangles. Take six of the
triangles from one face to form a hexagon. There will be
three triangles on each face that ultimately form parts of
pentagons. The result is a solid with 32 faces, 20 of which
are hexagons and 12 of which are pentagons. Geometers

Figure 1—Icosahedron tessellated with hexagons.
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Figure 2—World map projected on an unfolded icosahedron.

know this solid as a truncated icosahedron, athletes know
it as a soccer ball; and although the reader may not be
aware, virologists know it as the structure of a virus with
triangulation number T = 3 (Johnson and Speir 1997).
Figure 1 has sixty vertices marked with bold circles, and
chemists know this structure as C60 (Maggio 1994).

What If More Hexagons Are Desired?

As indicated by Carr and others (1999) and Tegmark
(1996), hexagons are useful because they form an ideal
network by which to divide a study area into smaller areas
from which to draw plots. Under the Lambert Azimuthal
Equal Area projection [used in the Snyder (1992) model of
this method], the default radius of the earth is 6,370,997 m.
A perfect sphere of this radius has a surface area equal to
5.10 x 1014 m2. This number is about 1.26 x 1011 ac. The
icosahedron in figure 1 must be subdivided to match the
scale of an FIA plot. There are 5,936 ac per FIA plot, which
compared to the surface area of the earth is one part in 21

million. Each large FHM hex has 27 FIA hexes and,
compared to the surface area of the earth, is 1 part in
786,000. If one wished to construct sixteenfold FIA hexes
(for a more intense FHM grid), one would need a cell that is
1 part in 1,327,000. The short answer of how to create
more hexagons is to create more triangles, as shown in
figure 3.

Instead of the 20 hexagons and 12 pentagons in figure 1,
we now have 110 hexagons and 12 pentagons. This
method will work elegantly if there are 9n2 triangles on each
face, for a total of 180n2 triangles. Twelve pentagons will
consume 60 triangles, leaving enough triangles for 30n2 –
10 hexagons. Note that if n = 162, then 30n2 – 10 is near
786,000; if n is around 840, then 30n2 – 10 is around 21
million. An icosahedron that circumscribes the earth has a
surface area about 14.6 percent larger than that of the
sphere—one may wish to use this surface area instead of
that of the earth. More exact numbers appear in table 1.

 

Figure 3—The second-order tessellation of the icosahedron with hexagons using the triangle
orientation.



27

HEXAGON  HIERARCHIES
In a tessellation of hexagons, one hexagon is surrounded
by six others, as in figure 4. If one connects the centers of
the outer ring of six, one produces a hexagon three times
as large as the original hexagon. One may continue in this
manner to get hexagons of size 3, 12, 27, 48, . . . 3n2, where
n = 1,2,3, . . .

If one connects opposite vertices of the ring of six as shown
in figure 5, one produces a hexagon four times as large as
the original hexagon. One may continue in this manner to
get compositions of size 1, 4, 9, 16, 25, . . . n2, again where
n = 1,2,3, . . .

If one makes a ring of six clusters of seven hexagons
around another cluster of seven hexagons, as shown in
figure 6, one produces a hexagon 21 times as large as a
basic hexagon. This maneuver is called a sevenfold
composition. The large hexagon is seven times larger than
a threefold hexagon. One may continue in this manner to
get compositions of size 1, 7, 19, 37, . . . 3n2 - 3n + 1, where
n = 1, 2, 3.

If one relaxes the constraint of requiring the vertex to be in
the center hexagon of the cluster and allows the vertex to be
in the center of any hexagon of the cluster, then one gets
another family of compositions and decompositions, such
as in figure 7.

The Chevron and Intermediate Orientations
The structures in figures 1, 2, and 3 are called the “triangle”
orientation. What if one applies the threefold decompo-
sition to the structures in figures 1, 2, and 3? Then one
obtains structures as in figure 7. Structures of this sort have
the chevron orientation. In this case, each face has 1.5
hexagons, plus three-fifths of a pentagon. Across 20 faces,
there are 12 pentagons and 30 hexagons. In general, there
are 10n2 –10 hexagons and 12 pentagons for a total of 10n2

+ 2 polygons. What resolutions yield FHM- and FIA-sized
hexagons?  The answer is about 280 for an FHM-sized
hexagon and about an order 1,458 for an FIA-sized
hexagon. Note that an order 1,458 hexagon is one twenty-
seventh the size of an order 162 hexagon of the opposite
orientation, and that an order 280 hexagon of this (the
“chevron”) orientation is 27 times as large as an order 840

A B

Figure 4—Illustration of (A) the threefold composition method and (B) its generalization.

Table 1—Number and size of polygons under the triangle orientation of various resolutions

Area of Area of
Order Triangles Hexagons + Pentagons = Polygons triangle hexagon

m2 m2

1 180 20 12 32 2.83 x 1012 1.70 x 1013

2 720 110 12 122 7.08 x 1011 4.25 x 1012

3 1,620 260 12 272 3.15 x 1011 1.89 x 1012

162 4,723,920 787,310 12 787,322 1.08 x 108 6.48 x 108

840 127,008,000 21,167,990 12 21,168,002 4.02 x 106 2.42 x 107

841 127,310,580 21,218,420 12 21,218,432 4.01 x 106 2.41x 107

842 127,613,520 21,268,910 12 21,268,922 4.00 x 106 2.40 x 107

843 127,916,820 21,319,460 12 21,319,472 3.99 x 106 2.39 x 107
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A B

Figure 5—Illustration of (A) the fourfold decomposition method and (B) its generalization

A B

Figure 6—Illustration of (A) the sevenfold and (B) the nineteenfold decomposition.

Figure 7—Thirteenfold decomposition.

hexagon of the opposite (the “triangle”) orientation. More
exact numbers appear in table 2.

Are the triangle and the chevron orientations the only ones
possible?  No, but mathematically they are the easiest. A
close inspection shows that the generalized threefold
decomposition is the chevron orientation. In figure 4 (A) cut
the figure from the center to the vertices of the bold
hexagon. What you see is the chevron orientation. In the
equation T = h2 + hk + k2, substitute h = n and k = n. The
result is T = 3n2. The generalized fourfold decomposition is
the triangle orientation. In figure 5 (A) cut the figure from the
center to the vertices of the bold hexagon. There is the
triangle orientation. In the equation T = h2 + hk + k2,
substitute h = n and k = 0. What remains is T = n2, and the
generalized sevenfold is an intermediate case. Substitute
h = n and k = n - 1 in the equation T = h2 + hk + k2. What
remains is T = 3n2 – 3n + 1, the generalized sevenfold
equation.
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As was mentioned in the introduction, virologists refer to
the “triangle” orientation as the structure of a virus with
triangulation number T = 3. Triangulation numbers work in
the following way:

Start with a plane of tessellated hexagons, as in figure 9.
From the origin, go north by h hexagons, marking a spot at
H1. Also, go northeast by h hexagons, marking a spot at
H2. From H1, go north by k hexagons, marking a spot at K1.
From H2, go northwest by k hexagons, marking a spot at
K2. In the figure, h = 3 and k = 2. The result is an equilateral
triangle with vertices at the origin, K1, and K2.

This equilateral triangle has a triangulation number T = h2 +
hk + k2, or in this case, 19. An icosahedron tessellated with
hexagons in this manner would have 10T – 10 hexagons,
12 pentagons, and, of course, 10T + 2 polygons. To
tesselate an icosahedron with hexagons, one may
continue in this fashion making sure that adjoining
triangles match partial hexagons—except at the poles and
the ends of the cuts, where pentagons are formed.

Figure 8—The chevron orientation of hexagon tessellation.

Table 2—Number and size of polygons under the chevron orientation at various resolutions

Area of Area of
Order Triangles Hexagons + Pentagons = Polygons triangle hexagon

m2 m2

1 60 20 12 32 8.50 x 1012 5.10 x 1013

2 240 30 12 42 2.13 x 1012 1.28 x 1013

3 540 80 12 92 9.45 x 1011 5.67 x 1012

280 4,704,000 783,990 12 784,002 1.08 x 108 6.51 x 108

281 4,737,660 789,600 12 789,612 1,08 x 108 6.46 x 108

1457 127,370,940 21,228,480 12 21,228,492 4.01 x 106 2.40 x 107

1458 127,545,840 21,257,630 12 21,257,642 4.00 x 106 2.40 x 107

1459 127,720,860 21,286,800 12 21,286,812 4.00 x 106 2.40 x 107

  
 
 
 
               K1 
      K2 
       H1 
 
 
      H2 

Figure 9—Method of constructing triangulation numbers.



30

Icosahedroning the Sphere
When the icosahedron is tessellated with hexagons in the
desired way, the next problem is projecting points and lines
on the icosahedron to points and lines on the sphere. This
problem has baffled cartographers for decades. Among the
first to offer a solution was Fisher (1943). His solution is
used to this day. He used a combination of aspects of the
gnomonic projection. Fisher’s map appears in Dahlberg
(1997) among other places.

One apparent disadvantage of Fisher’s map is that the
combination of aspects appears to abruptly shift from
straight parallels to curved parallels. The lines of 30° N.
and 30° S. look as though they appear on the map twice—
once as curved lines and once as straight lines. Thus,
directions could be ambiguous and certain points on the
earth might appear on the earth in two different places.
Snyder used a variation of the Lambert Azimuthal Equal
Area projection, and Buckminster Fuller devised a method
as well (Pitre 2000).

If you want to map the icosahedron to the sphere, it is
desirable that the points on the main triangles match. That
way, no point on the earth appears on the map more than
once and directions are unambiguous. To make
computations easier, you may want to start with the North
Pole at the top apex and the South Pole at the bottom apex.
Then, split the sphere into five parts with each cut 72° from
the next.

One tempting solution is to map parallels on the earth to
straight lines in the triangle orientation. Doing so, one can
see that 5 triangles (out of 20) join at each of the poles.
One can show that one-quarter of a sphere’s area is above
30° N., and one-quarter below 30° S. So simply map
straight lines in the triangle to parallels on the earth.
Meridians sweep out equal areas of the triangle. One flaw
in that method is that when half-hexagons are joined from
large triangles, the resultant figures look more like
pentagons than hexagons.

The next attempt might be to map straight lines on the
triangle to great circles on the earth. The cuts are still
mapped to meridians (which are great circles). Straight
lines are mapped to great circles, which follow such
equations as atan(c•sinθ). Munem and Foulis (1984) give
the area of a sphere as:

                                                      (1)

where

R = the radius,
t = longitude, and
f = colatitude.

One may adapt this equation to:

                                                                      (2)

where

f = latitude.

If one wants the area bounded by any 72° wedge, the North
Pole, and a particular great circle, one gets:

                       (3)

Integrate this to get:

                       (4)

If one wants one-twentieth of the total area of the sphere,
one sets this result equal to πR2/5, and then solves for c,
which turns out to be equal to 0.618034. If one substitutes
this value into atan(k•sinθ), one sees that the great circle
traces a route from 26.565 N. at the endpoints (the 54th and
126th meridians) to an apex of 31.717 N, at the 90th

meridian.

If one wants a mathematically simple method, one can just
project any point (x,y,z) on the triangular face of the
icosahedron to a point (X,Y,Z) on a sphere of radius R in the
following way:

                                    r  =  x2  +  y2  +  z2     (5)

                                        X  =  (R/r) •x     (5a)
                                        Y  =  (R/r) •y     (5b)
                                        Z  =  (R/r) •z     (5c)

This method leads to hexagons of roughly equal size.
Exactly equal sized hexagons are desirable, but not crucial
to planning a forest inventory (Snyder 1992).

One could adapt the gnomonic method to a more equal
area projection by observing that in the triangle orientation,
the first row has one triangle, the second three, the third
five, . . .  and k2 triangles up to and including the kth row. If
there are n2 total triangles on the face of a major triangle,
one may set expression (4) equal to (πR2/5)•(k2/n2) and
solve for c. Also, meridians would not be equally spaced on
the triangle. Observe that:
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                                                                                                     (6)

is equal to:

                                                                                     (7)

which in general is not linear in k. At latitudes near Puerto
Rico and the U.S. Virgin Islands, it makes little difference
whether one maps straight lines on the icosahedron to
parallels on the earth, great circles on the earth, or
loxodromes (lines of constant direction) on the earth.
However, at latitudes near Alaska, it does make a
difference.

In conclusion, figure 10 is a proposed grid system for
Puerto Rico and the Virgin Islands. This grid may need to
be altered in order to accommodate Snyder’s (1992)
assumptions and starting points as well as for the
particular needs of the FIA and FHM programs in the
Caribbean. At this writing, various resolutions of the grid
are being explored. In the conterminous United States, FIA-
sized hexagons have been grouped into sets of 27 for the
purpose of constructing traditional FHM-sized hexagons.
One could also overlay another network of sixteenfold
hexagons.
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Figure 10—Hexagon grid for Puerto Rico and the U.S. Virgin Islands
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